Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Brain Dis ; 38(4): 1155-1166, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36689104

RESUMO

Vitamin D3 deficiency is associated with an increased risk of dementia. An association between vitamin D3 deficiency and subjective cognitive complaints in geriatric patients has been previously reported. This study aimed to evaluate the effects of two doses of vitamin D3 on spatial memory (using the Radial Maze) and cytokine levels [tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-10 (IL-10)] on 2-, 6-, 13-, 22-, and 31-month-old male Wistar rats. Animals were supplemented with vitamin D3 at doses of 42 IU/kg and 420 IU/kg for 21 days. A radial maze test was performed to evaluate spatial memory. After the behavioral test, the frontal cortex and hippocampus were dissected for enzyme immunoassay analyses to measure the cytokine levels (TNFα, IL-1ß, IL-6, and IL-10). Our results showed that vitamin D3 supplementation reversed spatial memory impairment at the supplemented doses (42 and 420 IU/kg) in 6-, 13-, and 22-month-old animals and at a dose of 420 IU/kg in 31-month-old animals. The lower dose (42 IU/kg) regulates both pro- and anti-inflammatory cytokines mainly in the frontal cortex. Our results suggest that vitamin D3 has a modulatory action on pro- and anti-inflammatory cytokines, since older animals showed increased cytokine levels compared to 2-month-old animals, and that vitamin D3 may exert an immunomodulatory effect on aging.


Assuntos
Colecalciferol , Deficiência de Vitamina D , Ratos , Masculino , Animais , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Citocinas , Interleucina-10 , Ratos Wistar , Interleucina-6 , Memória Espacial , Fator de Necrose Tumoral alfa , Anti-Inflamatórios
2.
Artigo em Inglês | MEDLINE | ID: mdl-36195205

RESUMO

Women older than 60 have a higher risk of dementia, aging-related cognitive decline, and Alzheimer's Disease (AD) than the rest of the population. The main reason is hormonal senescence after menopause, a period characterized by a decline in estrogen levels. Since the effectiveness of drugs currently approved for the treatment of AD is limited, it is necessary to seek the development of new therapeutic strategies. Vitamin D deficiency is prevalent in AD patients and individuals with dementia in general. The supplementation of this vitamin in dementia patients might be an interesting approach for increasing the effectiveness of pre-existing medications for dementia treatment. Thus, the present study aims to investigate the effect of vitamin D treatment associated with memantine and donepezil in female mice submitted to ovariectomy (OVX) for five months and subjected to a dementia animal model induced by intracerebroventricular injection of aggregated amyloid ßeta (Aß1-42). For this purpose, Balb/c mice were divided into five experimental groups, which received 17 days of combined therapy with vitamin D, donepezil, and memantine. Then, animals were subjected to behavioral tests. OVX groups exhibited reduced levels of estradiol (E2) in serum, which was not altered by the combined therapy. Higher levels of vitamin D3 were found in the OVX animals submitted to the triple-association treatment. Mice exposed to both OVX and the dementia animal model presented impairment in short and long-term spatial and habituation memories. Also, female mice exposed to Aß and OVX exhibited a reduction in brain-derived neurotrophic factor (BDNF) and interleukin-4 (IL-4) levels, and an increase in tumor necrose factor-α (TNFα) levels in the hippocampus. Besides, increased levels of IL-1ß in the hippocampus and cerebral cortex were observed, as well as a significant increase in immunoreactivity for glial fibrillary acidic protein (GFAP), an astrocytes marker, in the hippocampus. Notably, triple-association treatment reversed the effects of the exposition of mice to Aß and OVX in the long-term spatial and habituation memories impairment, as well as reversed changes in TNFα, IL-1ß, IL-4, and GFAP immunoreactivity levels in the hippocampus of treated animals. Our results indicate that the therapeutic association of vitamin D, memantine, and donepezil has beneficial effects on memory performance and attenuated the neuroinflammatory response in female mice subjected to OVX associated with a dementia animal model.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Camundongos , Feminino , Animais , Memantina/farmacologia , Memantina/uso terapêutico , Donepezila/metabolismo , Donepezila/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Vitamina D/farmacologia , Interleucina-4/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Vitaminas , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo
3.
Metab Brain Dis ; 36(2): 213-224, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33219893

RESUMO

The present study aimed to evaluate the effect of folic acid treatment in an animal model of aging induced by D-galactose (D-gal). For this propose, adult male Wistar rats received D-gal intraperitoneally (100 mg/kg) and/or folic acid orally (5 mg/kg, 10 mg/kg or 50 mg/kg) for 8 weeks. D-gal caused habituation memory impairment, and folic acid (10 mg/kg and 50 mg/kg) reversed this effect. However, folic acid 50 mg/kg per se caused habituation memory impairment. D-gal increased the lipid peroxidation and oxidative damage to proteins in the prefrontal cortex and hippocampus from rats. Folic acid (5 mg/kg, 10 mg/kg, or 50 mg/kg) partially reversed the oxidative damage to lipids in the hippocampus, but not in the prefrontal cortex, and reversed protein oxidative damage in the prefrontal cortex and hippocampus. D-gal induced synaptophysin and BCL-2 decrease in the hippocampus and phosphorylated tau increase in the prefrontal cortex. Folic acid was able to reverse these D-gal-related alterations in the protein content. The present study shows folic acid supplementation as an alternative during the aging to prevent cognitive impairment and brain alterations that can cause neurodegenerative diseases. However, additional studies are necessary to elucidate the effect of folic acid in aging.


Assuntos
Envelhecimento/metabolismo , Ácido Fólico/farmacologia , Habituação Psicofisiológica/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Animais , Galactose , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar
4.
J Gerontol A Biol Sci Med Sci ; 76(6): 991-995, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-33249457

RESUMO

Folic acid (FA) supplementation is important during pregnancy to avoid malformations in the offspring. However, it is unknown if it can affect the offspring throughout their lives. To evaluate the offspring, female mother rats (dams) were separated into 5 groups: Four groups received the AIN-93 diet, divided into control and FA (5, 10, and 50 mg/kg), and an additional group received a FA-deficient diet, and the diet was performed during pregnancy and lactation. We evaluated the female offspring of these dams (at 2 and 18 months old). The aged offspring fed with FA-deficient diet presented habituation, spatial and aversive memory impairment and the FA maternal supplementation prevented this. The natural aging caused an increase in the TNF-α and IL-1ß levels in the hippocampus from 18-month-old offspring. FA maternal supplementation was able to prevent the increase of these cytokines. IL-4 levels decreased in the prefrontal cortex from aged control rats and FA prevented it. FA deficiency decreased the levels of IL-4 in the hippocampus of the young offspring. In addition, natural aging and FA deficiency decreased brain-derived neurotrophic factor levels in the hippocampus and nerve growth factor levels in the prefrontal cortex and FA supplementation prevented it. Thus, the present study shows for the first time the effect of FA maternal supplementation on memory, cytokines, and neurotrophins in the aged offspring.


Assuntos
Suplementos Nutricionais , Ácido Fólico/uso terapêutico , Inflamação/prevenção & controle , Transtornos da Memória/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Envelhecimento/efeitos dos fármacos , Animais , Feminino , Deficiência de Ácido Fólico/complicações , Hipocampo/metabolismo , Inflamação/etiologia , Transtornos da Memória/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA